TIPE: L'équation de la chaleur

Maxime Cauchois, Pierre-Emmanuel Émeriau, Marguerite Flammarion $25~{\rm juin}~2013$

Table des matières

I	Théor	ème des conditions aux bords
	I.1	Théorème d'existence et d'unicité
	I.2	Propriétés de la solution
II		astration du PCB
	II.1	Analyse de Fourier
	II.2	Preuve du théorème PCB
III	Discré	tisation du problème
	III.1	Présentation de la méthode des différences finies
	III.2	Discrétisation 1D
	III.3	Discrétisation 2D

Introduction à l'équation de la chaleur

Comment décrire l'évolution de la température dans une pièce, sachant la température initiale et la température à l'extérieur? L'équation de la chaleur aux dérivées partielles vise à décrire ce phénomène. En effet, la physique montre que la fonction scalaire température T dans l'espace est régie par l'équation aux dérivées partielles suivante :

$$\frac{\partial T}{\partial t} = D\Delta T + \frac{P}{\rho c}$$

avec Δ l'opérateur laplacien, D le coefficient de diffusivité thermique, ρ la masse volumique de matériau , P la production volumique de chaleur et c la chaleur massique du matériau. Dans toute la suite, on considérera P=0, et l'on notera $c=\frac{1}{D}$. L'équation devient alors :

$$\Delta T = c \frac{\partial T}{\partial t}$$

soit:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = c \frac{\partial T}{\partial t}$$

Cette équation reste valable à 1 ou 2 dimensions, qui feront l'objet de notre étude. En effet, dans le cas du problème à 1 dimension, il existe des solutions analytiques au problème dit de conditions aux bords (c'est à dire dans lequel la température aux bords du domaine d'étude est imposée) par le biais de l'analyse de Fourier. Pour ce qui est du problème à deux dimensions, nous verrons que des méthodes numériques permettent d'approcher les solutions réelles de façon très satisfaisante.

I Théorème des conditions aux bords

I.1 Théorème d'existence et d'unicité

Soit c une constante positive et f(t) une fonction continue 2π -périodique sur \mathbb{R}^+ . Alors il existe une unique fonction u(x,t) où $(x,t) \in \mathbb{R}^+ \times \mathbb{R}^{+*}$ satisfaisant aux propriétés suivantes :

- a) u(x,t) est 2π -périodique en t pour tout x.
- b) $\frac{\partial^2 u}{\partial x^2}$ et $\frac{\partial u}{\partial t}$ sont continues sur $\mathbb{R}^+ \times \mathbb{R}^+$.
- c) u vérifie $\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial x^2}$ pour tout $(x,t) \in \mathbb{R}^+ \times \mathbb{R}^{+*}$.
- d) La fonction u converge uniformément vers f par rapport à t lorsque x tend vers 0, c'est à dire que :

$$\lim_{x \to 0^+} \sup_{t \in \mathbb{R}^{+*}} |u(x,t) - f(t)| = 0$$

e) La solution u est donnée par la formule suivante :

$$\forall (x,t) \in \mathbb{R}^+ \times \mathbb{R}^{+*}, \quad u(x,t) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{-\alpha_n x} e^{int - i \operatorname{sgn}(n)\alpha_n x}$$
 (1)

où:

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-\imath nt} dt$$
 et $\alpha_n = \sqrt{\frac{|n|}{2c}}$.

I.2 Propriétés de la solution

R1 : lorsque x tend vers l'infini, la température tend vers une valeur uniforme donnée par la valeur moyenne de f sur $[0, 2\pi]$.

R2 : l'équation de la chaleur a un effet régularisant : pour x > 0 et t > 0, la solution u(x,t) est de classe C^{∞} même si la fonction ne l'est pas.

R3: il existe un principe du maximum:

$$\forall x > 0, \sup_{t \in \mathbb{R}^+} |u(x, t)| \le \sup_{t \in \mathbb{R}^+} |f(t)| \tag{2}$$

qui explique le fait qu'en un point x > 0 la variation de température ne peut pas être supérieure à celle induite par f(t) au point x = 0.

II Démonstration du PCB

II.1 Analyse de Fourier

Soit g une application 2π -périodique, continue sur \mathbb{R} et à valeurs dans \mathbb{C} .

Définition

On appelle coefficients de Fourier (exponentiels) de g les nombres complexes :

$$\widehat{g}(n) = \frac{1}{2\pi} \int_0^{2\pi} g(t)e^{-int} dt$$

et série de Fourier de g la série trigonométrique :

$$S_g(t) = \sum_{n \in \mathbb{Z}} \widehat{g}(n) e^{\imath nt}$$

Proposition

- a) Si g est de classe C^1 , la série de Fourier converge uniformément sur $\mathbb R$ et sa somme est q.
 - b) Pour tout $n \in \mathbb{Z}^*$, $\widehat{g'}(n) = i n \widehat{g}(n)$

On suppose par la suite que f est de classe C^2 sur $[0, 2\pi]$.

II.2 Preuve du théorème PCB

La démonstration du théorème s'effectue en deux étapes principales : une étape d'analyse, dans laquelle on démontre que toute solution au problème s'écrit sous une forme unique u(x,t) que l'on explicitera et une étape de **synthèse**, qui permet de vérifier que la solution u(x,t) trouvée vérifie effectivement les propriétés décrites.

Étape d'analyse

Soit u(x,t) une fonction solution au problème PCB. On note :

$$S_u(x,t) = \sum_{n \in \mathbb{Z}} C_n(x)e^{int},$$

la série de Fourier en temps de u(x,t) où :

$$C_n(x) = \frac{1}{2\pi} \int_0^{2\pi} u(x,t)e^{-\imath nt} dt$$

et

$$S_f(t) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{int},$$

la série de Fourier de f(t) où :

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-\imath nt} dt$$

D'après les propriétés a) et b) du théorème PCB, $S_u(x,t)$ converge uniformément vers u(x,t) pour tout x>0. D'après la proposition d) du théorème PCB, u(x,t) converge uniformément en temps vers f(t) quand x tend vers 0 c'est-à-dire que :

$$\lim_{x \to 0^+} \sup_{t \in \mathbb{R}^{+*}} |u(x,t) - f(t)| = 0$$

Soit $n \in \mathbb{Z}$. Montrons alors que $\lim_{x \to 0^+} |C_n(x) - \widehat{f}(n)| = 0$.

Soit $\epsilon > 0$.

Il existe $\eta > 0$ tel que $\forall x \in]0; \eta], \forall t \in \mathbb{R}_+^*, |u(x,t) - f(t)| \le \epsilon$. Soit $x \in]0; \eta]$. Alors :

$$|C_n(x) - \widehat{f}(n)| = \left| \frac{1}{2\pi} \int_0^{2\pi} (u(x,t) - f(t)) dt \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} (|u(x,t) - f(t)|) dt$$

$$\leq \frac{1}{2\pi} \cdot \epsilon \cdot 2\pi$$

$$\leq \epsilon$$

Donc

$$\forall n \in \mathbb{Z}, C_n(x) \xrightarrow[x \to 0]{} \widehat{f}(n)$$

On multiplie alors l'équation de la chaleur, vérifiée par u, propriété c), par $e^{-\imath nt}$, puis on intègre entre 0 et 2π .

$$\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial u}{\partial t} e^{-\imath nt} dt = \frac{c}{2\pi} \int_{0}^{2\pi} \frac{\partial^{2} u}{\partial x^{2}} e^{-\imath nt} dt$$

A l'aide d'une intégration par parties pour $\frac{1}{2\pi}\frac{\partial u}{\partial t}(x,t)e^{-\imath nt}$, puis en utilisant la 2π -périodicité de u(x,t) en temps, on obtient finalement :

$$in C_n(x) = \frac{c}{2\pi} \int_0^{2\pi} \frac{\partial^2 u}{\partial x^2} e^{-int} dt$$

De là, par le théorème de la dérivation sous le signe intégrale, applicable car $(x,t) \mapsto \frac{\partial^2 u}{\partial x^2}$ existe et est continue sur $\mathbb{R}^+ \times \mathbb{R}^+$, on en déduit que :

$$C_n''(x) = \frac{d^2}{dx^2} \left(\frac{1}{2\pi} \int_0^{2\pi} u(x,t)e^{-\imath nt} dt\right)$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial^2 u}{\partial x^2} e^{-\imath nt} dt$$

Ainsi, on obtient cette équation différentielle :

$$C_n''(x) = \frac{in}{c}C_n(x)$$

$$C_n''(x) = \lambda_n^2 C_n(x) \tag{3}$$

où l'on a posé :

$$\lambda_n = \alpha_n + i sgn(n)\alpha_n \text{ et } \alpha_n = \sqrt{\frac{|n|}{2c}}$$

La solution de cette équation différentielle du second ordre est alors :

$$C_n(x) = A_n(x_0)e^{\lambda_n(x-x_0)} + B_n(x_0)e^{-\lambda_n(x-x_0)}$$

pour un $x_0 > 0$ fixé et pour $x \ge x_0$ tel que $C_n(x_0) = A_n(x_0) + B_n(x_0)$. On "choisit" alors de prendre $A_n(x_0) = 0$, dans la mesure où l'étude porte sur l'évolution de la température u en fonction du t et de x, et que des solutions divergentes en espace ne conviennent pas, puisque la fonction u est bornée pour tout $t \ge 0$ et $x \ge 0$. On obtient ainsi :

$$\forall x \ge x_0 > 0, \ C_n(x) = C_n(x_0)e^{-\lambda_n(x-x_0)}$$

De plus, on sait que:

$$C_n(x_0) \underset{x_0 \to 0}{\longrightarrow} \widehat{f}(n)$$

Donc il vient que:

$$\forall x > 0, C_n(x) = \widehat{f}(n)e^{-\lambda_n x}$$

On obtient l'expression explicite de u(x,t) :

$$\forall x \geqslant 0, \, t \geqslant 0, \, u(x, t) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{-\alpha_n x} e^{int - isgn(n)\alpha_n x} \tag{4}$$

Étape de synthèse

Nous vérifions que la fonction u déterminée dans le paragraphe précédent vérifie effectivement les propriétés du théorème PCB.

- a) $t \mapsto u(x,t)$ est effectivement 2π -périodique en temps.
- b) Pour montrer l'existence et la continuité de $\frac{\partial^2 u}{\partial x^2}$ et $\frac{\partial u}{\partial t}$, on invoque les théorèmes relatifs à la dérivabilité de la somme d'une série et le fait que f étant supposée C^2 , f' vérifie la proposition rappelée précédemment sur les séries de Fourier : la série de Fourier de f' converge uniformément sur \mathbb{R} et sa somme est f', et on a :

$$\widehat{f''}(n) = i n \widehat{f'}(n) = -n^2 \widehat{f}(n)$$

- c) Cette propriété se vérifie aisément grâce à l'expression trouvée de u(x,t). Il convient simplement de rappeler les hypothèses nécessaires à l'application des théorèmes sur la dérivabilité de la somme d'une série.
- d) Montrons que u(x,t) converge uniformément vers f(t) quand x tend vers 0. Soit $(x,t) \in \mathbb{R}^+ \times \mathbb{R}^+$.

$$u(x,t) - f(t) = \sum_{n \in \mathbb{Z}} \widehat{f}(n)e^{int}(e^{-\alpha_n x - isgn(n)\alpha_n x} - 1)$$
$$= \sum_{n \in \mathbb{Z}} \widehat{f}(n)e^{int}(h(1) - h(0))$$

avec

$$h:[0,1] \to \mathbb{C}$$

 $s \mapsto e^{-\alpha_n sx - isgn(n)\alpha_n sx}$

De plus |h'| est majorée sur [0,1] par $x\sqrt{\frac{|n|}{c}}$ indépendante de s. Ainsi, pour tout $t\in\mathbb{R}^+$ et $x\in\mathbb{R}^{+*}$:

$$|u(x,t) - f(t)| \leq \frac{x}{\sqrt{c}} \sum_{n \in \mathbb{Z}} |\widehat{f}(n)| \sqrt{|n|}$$

$$\leq \frac{x}{\sqrt{c}} \sum_{n \in \mathbb{Z}} |\widehat{f}(n)| \sqrt{|n|} \frac{|n|^{3/2}}{|n|^{3/2}}$$

$$\leq \frac{x}{\sqrt{c}} (\sum_{n \in \mathbb{Z}} |n|^3 \widehat{f}(n)^2)^{1/2} (\sum_{n \in \mathbb{Z}} \frac{1}{n^2})^{1/2}$$

d'après l'inégalité de Cauchy-Schwartz. La série $(\sum_{n\in\mathbb{Z}}\frac{1}{n^2})^{1/2}$ est bien une série convergente (vers $\frac{\pi}{\sqrt{3}}$), donc une constante. Il reste alors à montrer que la famille de terme général $|n|^3\widehat{f}(n)^2$ est sommable. Pour cela, on utilise l'égalité de Perceval à la fonction f'' de classe C^0 et 2π -périodique :

$$\sum_{n \in \mathbb{Z}} |\widehat{f''}(n)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f''(t)|^2 dt < +\infty$$

D'après un résultat précédent, on sait que $|\widehat{f''}(n)| = |n^2 \widehat{f}(n)|$. Donc :

$$\sum_{n \in \mathbb{Z}} |n|^3 \widehat{f}(n)^2 \leqslant \sum_{n \in \mathbb{Z}} |n^2 \widehat{f}(n)|^2$$

$$\leqslant \sum_{n \in \mathbb{Z}} |\widehat{f''}(n)|^2$$

$$< \infty$$

Donc il existe $\lambda \in \mathbb{R}$ tel que :

$$\forall (x,t) \in \mathbb{R}^{+*} \times \mathbb{R}^+, |u(x,t) - f(t)| \leq \lambda x$$

On en déduit que u converge uniformément vers f en temps quand x tend vers 0.

III Discrétisation du problème

III.1 Présentation de la méthode des différences finies

La méthode des différences finies permet d'approcher les dérivées partielles d'une fonction à l'aide d'opérateurs discrets de dérivations. En effet, prenons f une fonction de classe C^3 sur un intervalle I de $\mathbb R$ quelconque.

Soit $a \in I$.

La formule de Taylor-Young donne alors :

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + O(h^3)$$

$$f(a-h) = f(a) - hf'(a) + \frac{h^2}{2}f''(a) + O(h^3)$$

En combinant les deux égalités, il vient :

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} + O(h^2)$$

$$f''(a) = \frac{f(a+h) + f(a-h) - 2f(a)}{h^2} + O(h)$$

Il existe d'autres approximations de f' mais elles sont en O(h) quand celle-ci est en $O(h^2)$. Pour des fonctions de deux ou trois variables, le principe reste exactement le même. Par exemple si u est une fonction des variables t, x et y, on peut écrire :

$$\begin{array}{lcl} \frac{\partial u}{\partial x} & = & \frac{u(x+\Delta x,y,t)-u(x-\Delta x,y,t)}{2\Delta x} + O(\Delta x^2) \\ \frac{\partial^2 u}{\partial x^2} & = & \frac{u(x+\Delta x,y,t)+u(x-\Delta x,y,t)-2u(x,y,t)}{\Delta x^2} + O(\Delta x) \end{array}$$

Il en est évidemment de même pour les dérivées partielles en t ou y. Ensuite,il s'agit de définir un maillage, c'est à dire de choisir un pas pour les variables x, y et t: on définit ainsi une subdivision à pas constant du segment représentant les valeurs pouvant être prises par x, puis par y. L'approche pour t est légèrement différente puisque t représente le temps, nécessairement croissant : on se contente de choisir une valeur pour Δt (nous verrons que cette valeur doit parfois remplir certaines conditions liées à la stabilité du schéma) et nous notons alors t_k pour le temps $t_0 + k\Delta t$. On notera dans la suite u_i^n pour $u(x_i, t_n)$ et $u_{i,j}^n$ pour $u(x_i, y_j, t_n)$.

Schémas implicite et explicite

Schéma explicite

Dans un schéma dit explicite, aucun système d'équations n'est à résoudre, c'est à dire qu'il n'y a pas d'inversion de matrice à effectuer : le passage du temps t_k au temps t_{k+1} se fait par le biais d'un calcul direct. Pour cela, on peut par exemple approximer une dérivée partielle de la façon suivante :

$$\frac{\partial u}{\partial t}(x_j, t_n) = \frac{u_j^{n+1} - u_j^n}{\Delta t}$$

$$\frac{\partial^2 u}{\partial x^2}(x_j, t_n) = \frac{u_{j+1}^{n} - 2u_j^n + u_{j-1}^n}{\Delta x^2}$$

Notre équation de la chaleur à une dimension devient alors :

$$\begin{cases} u_{j+1}^n - 2u_j^n + u_{j-1}^n \\ \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} = c \frac{u_j^{n+1} - u_j^n}{\Delta t} \\ u_j^0 = f(x_j) \text{ pour } j \in \{1, 2..N - 1\} \\ u_0^n = u_N^n = T_0 \end{cases}$$

On connaît dès lors les u_j^0 , et l'on peut calculer u_j^1 ,... jusqu'à u_j^n . Les u_j^{n+1} se déduisent ainsi directement des u_j^n .

Schéma implicite

Le schéma explicite se caractérise par l'inversion de matrices qu'il nécessite pour passer du temps t_n au temps t_{n+1} . Par exemple, si l'on choisit pour approximation de la dérivée en t comme telle :

$$\frac{\partial u}{\partial t}(x_j, t_n) = \frac{u_j^n - u_j^{n-1}}{\Delta t}$$

Dès lors, le système d'équations au temps t_n devient :

$$\begin{pmatrix} \alpha & \beta & & & \\ \beta & \alpha & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \beta & \alpha & \beta \\ & & & \beta & \alpha \end{pmatrix} \begin{pmatrix} u_1^n \\ u_2^n \\ \vdots \\ u_{N-2}^n \\ u_{N-1}^n \end{pmatrix} = \begin{pmatrix} -\frac{u_1^{n-1}}{\Delta t} - \beta u_0^n \\ -\frac{u_2^{n-1}}{\Delta t} \\ \vdots \\ -\frac{u_{N-2}^{n-1}}{\Delta t} \\ -\frac{u_{N-1}^{n-1}}{\Delta t} - \beta u_0^n \end{pmatrix}$$

avec $\alpha = -\frac{1}{\Delta t} - \frac{2}{c \ \Delta x^2}$ et $\beta = \frac{1}{c \ \Delta x^2}$. Il s'agit donc ici d'inverser une matrice tridiagonale, pour lesquelles il existe des algorithmes spécialisés (algorithme de Thomas en O(n)).

Stabilité et Consistance

La discrétisation n'est efficace que si les erreurs commises par rapports aux valeurs réelles ne croissent pas pendant la procédure numérique. Il existe trois types de schémas :

- inconditionnellement stable : stable pour tout Δx et Δt choisis.
- conditionnellement stable : il existe une condition de stabilité sur Δx et Δt .
- inconditionnellement instable : résultats faux dans tous les cas, et donc à proscrire.

De plus, un schéma est dit consistant si l'erreur de troncature, notée E.T, et qui correspond à la différence entre les dérivées continues et les dérivées discrètes dans l'équation étudiée, est telle que :

$$\lim_{(\Delta x, \Delta t) \to (0,0)} E.T = 0$$

Un schéma est dit alors convergent s'il est stable et consistant.

III.2 Discrétisation 1D

Pour le schéma à 1 dimension, nous avons choisi d'implémenter avec Maple le schéma implicite inconditionnellement stable évoqué ci-dessus, qui permet une précision en $(O(\Delta x), O(\Delta t))$, dont la mise en oeuvre est assez intuitive.

Le programme Maple a été réalisé en plusieurs étapes :
-d'abord une phase de construction de matrices utilisées dans le cadre du schéma.

-ensuite une procédure récursive permettant le renvoi du vecteur
$$U_n = \begin{pmatrix} u_1 \\ u_2^n \\ \vdots \\ u_{N-2}^n \\ u_{N-1}^n \end{pmatrix}$$

-enfin une implémentation graphique du résultat pour une large gamme de temps.

III.3 Discrétisation 2D

Présentation du schéma

L'équation étudiée est alors :

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = c \frac{\partial u}{\partial t}$$

En 2D, nous choisissons un schéma explicite conditionnellement stable, en approximant ainsi les dérivées partielles :

$$\begin{array}{lcl} \frac{\partial u}{\partial t}(x_i,y_j,t_n) & = & \frac{u_{i,j}^{n+1}-u_{i,j}^n}{\Delta t} \\ \frac{\partial^2 u}{\partial x^2}(x_i,y_j,t_n) & = & \frac{u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n}{\Delta x^2} \\ \frac{\partial^2 u}{\partial y^2}(x_i,y_j,t_n) & = & \frac{u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n}{\Delta y^2} \end{array}$$

L'évolution du sytème se traduit alors ainsi :

$$u_{i,j}^{n+1} = Au_{i,j}^n + Bu_{i+1,j}^n + Cu_{i-1,j}^n + Du_{i,j+1}^n + Eu_{i,j-1}^n$$

avec:

$$\begin{cases} A = 1 - \frac{2\Delta t}{c \Delta x^2} - \frac{2\Delta t}{c \Delta y^2} \\ B = \frac{\Delta t}{c \Delta x^2} \\ C = \frac{\Delta t}{c \Delta t^2} \\ D = \frac{\Delta t}{c \Delta y^2} \\ E = \frac{\Delta t}{c \Delta y^2} \end{cases}$$

Èn réalité B = C et D = E, et puisque nous prenons $\Delta x = \Delta y$ on aura B = C = D = E, mais nous les différencions pour des raisons de clarté.

Forme matricielle du problème

On pose:

$$U_{n} = \begin{pmatrix} u_{1,1}^{n} \\ u_{1,2}^{n} \\ \vdots \\ u_{1,J}^{n} \\ u_{2,1}^{n} \\ \vdots \\ \vdots \\ u_{I-1,J}^{n} \\ u_{I,1}^{n} \\ \vdots \\ u_{I,J}^{n} \end{pmatrix}$$

On peut dès lors traduire le problème sous forme matricielle :

$$U_{n+1} = MU_n + V$$

avec M une matrice-blocs de taille (I*J,I*J):

$$M = \begin{pmatrix} M_c & M_d \\ M_g & M_c & M_d \\ & M_g & \ddots & \ddots \\ & & \ddots & \ddots & M_d \\ & & & M_g & M_c \end{pmatrix}$$

où M_c, M_d et M_g sont les matrices suivantes :

$$M_c = \begin{pmatrix} A & D & & 0 \\ E & \ddots & \ddots & \\ & \ddots & \ddots & D \\ & & E & A \end{pmatrix}$$

$$M_g = \begin{pmatrix} C & & 0 \\ & \ddots & \\ 0 & & C \end{pmatrix}$$

$$M_d = \begin{pmatrix} B & & 0 \\ & \ddots & \\ 0 & & B \end{pmatrix}$$

Le vecteur V de taille I*J contient pour sa part les conditions aux bords :

$$V = \begin{pmatrix} Cu_{0,1} + Eu_{1,0} \\ Cu_{0,2} \\ \vdots \\ Cu_{0,J} + Du_{1,J+1} \\ Eu_{2,0} \\ 0 \\ \vdots \\ 0 \\ Du_{2,J+1} \\ Eu_{3,0} \\ 0 \\ \vdots \\ \vdots \\ 0 \\ Du_{I-1,J+1} \\ Bu_{I+1,1} + Eu_{1,0} \\ Bu_{I+2,0} \\ \vdots \\ Bu_{I+1,J} + Du_{I,J+1} \end{pmatrix}$$

Conditions de stabilité (Admis)

La condition de stabilité de ce schéma est la suivante :

$$\frac{\Delta t}{c}(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}) \leqslant \frac{1}{2}$$

En prenant $\Delta x = \Delta y$, on obtient une condition plus restrictive que pour le schéma explicite à une dimension :

$$\frac{\Delta t}{\Delta x^2} \leqslant \frac{c}{4}$$